Penrose: from mathematical notation to beautiful diagrams (2022)

by Katherine Ye1, Wode Ni1, Max Krieger1, Dor Ma'ayan1, 2, Jenna Wise1, Jonathan Aldrich1, Joshua Sunshine1, and Keenan Crane1

1Carnegie Mellon University, 2Technion

appearing in SIGGRAPH 2020

Paper

Talk

Teaser video

Abstract

We introduce a system called Penrose for creating mathematical diagrams. Its basic functionality is to translate abstract statements written in familiar math-like notation into one or more possible visual representations. Rather than rely on a fixed library of visualization tools, the visual representation is user-defined in a constraint-based specification language; diagrams are then generated automatically via constrained numerical optimization. The system is user-extensible to many domains of mathematics, and is fast enough for iterative design exploration. In contrast to tools that specify diagrams via direct manipulation or low-level graphics programming, Penrose enables rapid creation and exploration of diagrams that faithfully preserve the underlying mathematical meaning. We demonstrate the effectiveness and generality of the system by showing how it can be used to illustrate a diverse set of concepts from mathematics and computer graphics.

Want to use Penrose or collaborate?

Please note that Penrose is an early-stage system that is still in development. Our system is not ready for contributions or public use yet, but we're working on it!

Want to be the first to hear about our system as we build it? Join our mailing list:

And reach out to us on Twitter: @UsePenrose

We're especially looking to talk with authors, educators, and expert illustrators who might be interested in collaborating on building a Penrose library for their area of expertise. Please fill out the form below (also accessible here) if interested.

Selected figures

Point p, q, r, s
Segment a := {p, q}
Segment b := {p, r}
Point m := Midpoint(a)
Angle theta := ∠(q, p, r)
Triangle t := {p, r, s}
Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

Penrose: from mathematical notation to beautiful diagrams (2)

Fig. 1. Penrose is a framework for specifying how mathematical statements should be interpreted as visual diagrams. A clean separation between abstract mathematical objects and their visual representation provides new capabilities beyond existing code- or GUI-based tools. Here, for instance, the same set of statements is given three different visual interpretations, via Euclidean, spherical, and hyperbolic geometry. (Further samples are shown in Fig. 29.)

PathType t
HasForm(t,"L(D|S)S*E")
Path p := Sample(t)

Fig. 4. By specifying diagrams in terms of abstract relationships rather than explicit graphical directives, they are easily adapted to a wide variety of use cases. Here we use identical Penrose code to generate ray tracing diagrams for several targets (Sec 5.6). Though the arrangement and number of objects changes in each example, the meaning remains the same.

(Video) Penrose: From Mathematical Notation to Beautiful Diagrams

Fig. 7. Extensibility enables users to adopt conventions and notation that reflect the way they naturally write mathematical prose. Here, the resulting diagram plays the role of the concluding statement.

Penrose: from mathematical notation to beautiful diagrams (4)

Fig. 8. An optimization-based approach makes it possible to jointly optimize visual attributes that are difficult to coordinate by hand. Here for instance we optimize color contrast according to the spatial proximity of adjacent disks (left to right), ultimately discovering a two-color solution (far right). The system can also be used to debug the optimization process itself—in this case by drawing the hue of each disk as a dot on a color wheel.

Penrose: from mathematical notation to beautiful diagrams (5)

Fig. 9. A language-based design makes it easy to build tools on top of Penrose that provide additional power. Here we use standard techniques from program synthesis (Sec. 5.7) to automatically enumerate how the given relationships can be realized. Generating such examples helps to see important corner cases that might be missed when drawing diagrams by hand (where perhaps the top-left diagram most easily comes to mind).

Penrose: from mathematical notation to beautiful diagrams (6)

Fig. 17. Our system supports integration with web-based applications. Here a Penrose IDE provides automatic syntax highlighting and autocomplete for any user-defined domain.

(Video) Penrose diagrams

-- Sets.dsl
type Set
predicate Intersecting : Set s1 * Set s2
predicate IsSubset : Set s1 * Set s2
predicate Not : Prop p
notation "A ⊂ B" ~ "IsSubset(A, B)"
notation "A ∩ B = ∅" ~ "Not(Intersecting(A, B))"

-- Sets.sub
Set A, B, C, D, E, F, G
B ⊂ A
C ⊂ A
D ⊂ B
E ⊂ B
F ⊂ C
G ⊂ C
E ∩ D = ∅
F ∩ G = ∅
B ∩ C = ∅

-- Sets-Disks.sty
forall Set x {

x.shape = Circle { strokeWidth : 0.0 }
x.text = Text { string : x.label }
ensure contains(x.shape, x.text)
encourage sameCenter(x.text, x.shape)
layer x.shape below x.text

}

forall Set x; Set y
where IsSubset(x, y) {

ensure contains(y.shape, x.shape)
ensure smallerThan(x.shape, y.shape)
ensure outsideOf(y.text, x.shape)
layer x.shape above y.shape
layer y.text below x.shape

}

forall Set x; Set y
where NotIntersecting(x, y) {

ensure disjoint(x.shape, y.shape)

}

Penrose: from mathematical notation to beautiful diagrams (7)

Fig. 18. Here, some Substance code is used to specify set relationships. Different Style programs not only tweak the visual style (e.g., flat vs. shaded disks), but allow one to use a completely different visual representation (e.g., a tree showing set inclusions). Sets.sty above describes the flat disk style.

-- Injection.sub
Set A, B
f: A -> B
Injection(f)
Not(Surjection(f))

-- Surjection.sub
Set A, B
f: A -> B
Surjection(f)
Not(Injection(f))

(Video) Envisioning the Universe - Basics of Penrose Diagrams

-- Bijection.sub
Set A, B
f: A -> B
Surjection(f)
Injection(f)

Penrose: from mathematical notation to beautiful diagrams (8)

Fig. 19. Different visual representations provide different ways of thinking about an idea. Here, the notion of injections, bijections, and surjections is illustrated in both discrete (left) and continuous (right) styles. In the former, functions with the desired properties are randomly generated by an SMT solver, allowing the user to learn from many different examples.

Fig. 22. Once a complex diagram has been built, it can be easily broken into pieces or stages by, e.g., commenting out lines of Substance code. Here we illustrate steps in Euclid's proof of the Pythagorean theorem, turning Byrne's static figure (far right) into a progressive "comic strip."

SimplicialComplex K
Edge e ∈ K

Subcomplex E ⊆ K
E := Closure(e)

SimplicialSet StE ⊆ K
StE := Star(E)

Subcomplex ClStE ⊆ K
ClStE := Closure(StE)

Subcomplex ClE ⊆ K
ClE := Closure(E)

SimplicialSet StClE ⊆ K
StClE := Star(ClE)

SimplicialSet LkE ⊆ K
LkE := SetMinus(ClStE, StClE)


Penrose: from mathematical notation to beautiful diagrams (9)

Fig. 24. A language-based specification makes it easy to visually inspect data structures or assemble progressive diagrams with only minor changes to program code. Here we draw the simplicial link by building it up from simpler constituent operations.

Penrose: from mathematical notation to beautiful diagrams (10)

Fig. 29. Though the energy in the objective function can help guide a sampling strategy, choosing which diagram looks "best" to a given user is necessarily a subjective decision. The ability to automatically generate many alternatives makes it easier to find a satisfactory diagram. Here we show a gallery of automatically-generated variants of Fig. 1.

(Video) Carter-Penrose diagram of the Schwarzschild spacetime

More information

Press

Acknowledgments

We thank Lily Shellhammer and Yumeng Du for their help. The first author was supported by a Microsoft Research PhD Fellowship and ARCS Foundation Fellowship while completing this work; the last author was supported by a Packard Fellowship. This material is based upon work supported by the National Science Foundation under grants DMS-1439786 and CCF-1910264, the AFRL and DARPA under agreement FA8750-16-2-0042, and the Alfred P. Sloan Foundation under award G-2019-11406.

How to cite

ACM reference format

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich, Joshua Sunshine, and Keenan Crane. 2020. Penrose: From Mathematical Notation to Beautiful Diagrams. ACM Trans. Graph. 39, 4, Article 144 (July 2020), 16 pages. https://doi.org/10.1145/3386569.3392375

BibTeX

@article{Ye:2020:Penrose,

author = {Ye, Katherine and Ni, Wode and Krieger, Max and Ma'ayan, Dor and Wise, Jenna and Aldrich, Jonathan and Sunshine, Jonathan and Crane, Keenan},
title = {Penrose: From Mathematical Notation to Beautiful Diagrams},
journal = {ACM Trans. Graph.},
volume = {39},
number = {4},
year = {2020},
publisher = {ACM},
address = {New York, NY, USA}

}

Project link

http://penrose.cs.cmu.edu/

(Video) Lecture 23: Penrose Diagrams (International Winter School on Gravity and Light 2015)

Videos

1. Carter-Penrose diagrams of Reissner Nordström spacetime
(Arindam Kumar Chatterjee)
2. Listen to Tensors: Animated Visual Score
(JoonHwi (as an artist))
3. Penrose diagram of Reissner Nordström
(Alfonso García-Parrado)
4. General Relativity, Lecture 20
(Renato Renner)
5. What happened at the Models of Consciousness Meeting in 2022? Part 2
(Neural basis of Consciousness)
6. On Roger Penrose's intuition on intelligence
(Ken Mogi Brain World)

Top Articles

Latest Posts

Article information

Author: Gov. Deandrea McKenzie

Last Updated: 11/24/2022

Views: 6486

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.